403 research outputs found

    Higher Dimensional Gravity, Propagating Torsion and AdS Gauge Invariance

    Full text link
    The most general theory of gravity in d-dimensions which leads to second order field equations for the metric has [(d-1)/2] free parameters. It is shown that requiring the theory to have the maximum possible number of degrees of freedom, fixes these parameters in terms of the gravitational and the cosmological constants. In odd dimensions, the Lagrangian is a Chern-Simons form for the (A)dS or Poincare groups. In even dimensions, the action has a Born-Infeld-like form. Torsion may occur explicitly in the Lagrangian in the parity-odd sector and the torsional pieces respect local (A)dS symmetry for d=4k-1 only. These torsional Lagrangians are related to the Chern-Pontryagin characters for the (A)dS group. The additional coefficients in front of these new terms in the Lagrangian are shown to be quantized.Comment: 10 pages, two columns, no figures, title changed in journal, final version to appear in Class. Quant. Gra

    Effectively four-dimensional spacetimes emerging from d=5 Einstein-Gauss-Bonnet Gravity

    Full text link
    Einstein-Gauss-Bonnet gravity in five-dimensional spacetime provides an excellent example of a theory that, while including higher-order curvature corrections to General Relativity, still shares many of its features, such as second-order field equations for the metric. We focus on the largely unexplored case where the coupling constants of the theory are such that no constant-curvature solution is allowed, leaving open the question of what the vacuum state should then be. We find that even a slight deviation from the anti-de Sitter Chern-Simons theory, where the vacuum state is five-dimensional AdS spacetime, leads to a complete symmetry breakdown, with the fifth dimension either being compactified into a small circle or shrinking away exponentially with time. A complete family of solutions, including duality relations among them, is uncovered and shown to be unique within a certain class. This dynamical dimensional reduction scenario seems particularly attractive as a means for higher-dimensional theories to make contact with our four-dimensional world.Comment: 9 pages, 4 figures. v2: New section on geometrical significance of solutions. Final version for CQ

    Black holes with topologically nontrivial AdS asymptotics

    Get PDF
    Asymptotically locally AdS black hole geometries of dimension d > 2 are studied for nontrivial topologies of the transverse section. These geometries are static solutions of a set of theories labeled by an integer 0 < k < [(d-1)/2] which possess a unique globally AdS vacuum. The transverse sections of these solutions are d-2 surfaces of constant curvature, allowing for different topological configurations. The thermodynamic analysis of these solutions reveals that the presence of a negative cosmological constant is essential to ensure the existence of stable equilibrium states. In addition, it is shown that these theories are holographically related to [(d-1)/2] different conformal field theories at the boundary.Comment: 13 Pages, 3 figures, two columns, Revtex, last version for PR

    SUTURA DE B-LYNCH: EXPERIENCIA EN EL DESARROLLO DE UNA NUEVA TÉCNICA QUIRÚRGICA

    Full text link
    Antecedentes: La hemorragia postparto (HPP) continúa siendo una de las patologías más prevalentes en la morbimortalidad materna en todo el mundo, especialmente en los países subdesarrollados. Distintos protocolos de manejo y técnicas se han desarrollado en los últimos años para su control. La sutura de B-Lynch surge como una herramienta útil y reproducible. Objetivo: Demostrar los beneficios de la técnica para el control de la HPP. Método: Serie de 5 casos en los que se realizó la sutura de B-Lynch en el Servicio de Obstetricia y Ginecología del Hospital Carlos Van Buren. Se identifican 5 casos en los que se realizó la técnica. Resultados: En los 5 casos se logró exitosamente controlar la HPP y preservar el útero. Una de las pacientes logró un embarazo posterior exitoso. Conclusión: Nuestros resultados permiten afirmar que la técnica de B-Lynch es segura, útil y reproducible en el manejo de la HPP

    Sources for Chern-Simons theories

    Full text link
    The coupling between Chern-Simons theories and matter sources defined by branes of different dimensionalities is examined. It is shown that the standard coupling to membranes, such as the one found in supergravity or in string theory, does not operate in the same way for CS theories; the only p-branes that naturally couple seem to be those with p=2n; these p-branes break the gauge symmetry (and supersymmetry) in a controlled and sensible manner.Comment: 17 pages, Dedicated to Claudio Bunster on the occasion of his 60th birthday. To appear in Quantum Mechanics of Fundamental Systems: The Quest for Beauty and Simplicit

    Charged solutions in 5d Chern-Simons supergravity

    Get PDF
    A family of solutions with mass and electric charge of five-dimensional Chern-Simons supergravity is displayed. The action contains an extra term that changes the value of the cosmological constant, as considered by Horava. It is shown that the solutions approach asymptotically the Reissner-Nordstrom spacetime. The role of the torsion tensor in providing charged solutions is stressed.Comment: Minor changes. To appear in PRD. 8 pages, RevTeX 4, two colum

    New Gauge Supergravity in Seven and Eleven Dimensions

    Full text link
    Locally supersymmetric systems in odd dimensions whose Lagrangians are Chern-Simons forms for supersymmetric extensions of anti-de Sitter gravity are discussed. The construction is illustrated for D=7 and 11. In seven dimensions the theory is an N=2 supergravity whose fields are the vielbein (eμae_{\mu}^{a}), the spin connection (ωμab\omega_{\mu}^{ab}), two gravitini (ψμi\psi_{\mu}^{i}) and an sp(2)sp(2) gauge connection (aμjia_{\mu j}^{i}). These fields form a connection for osp(28)osp(2|8). In eleven dimensions the theory is an N=1 supergravity containing, apart from eμae_{\mu}^{a} and ωμab\omega_{\mu}^{ab}, one gravitino ψμ\psi_{\mu}, and a totally antisymmetric fifth rank Lorentz tensor one-form, bμabcdeb_{\mu}^{abcde}. These fields form a connection for osp(321)osp(32|1). The actions are by construction invariant under local supersymmetry and the algebra closes off shell without requiring auxiliary fields. The N=2[D/2]N=2^{[D/2]}-theory can be shown to have nonnegative energy around an AdS background, which is a classical solution that saturates the Bogomolnyi bound obtained from the superalgebra.Comment: 5pages, RevTeX, no figures, two columns, minor typos correcte

    Cosmological Topologically Massive Gravitons and Photons

    Get PDF
    We study topologically massive (2+1)-dimensional gravity with a negative cosmological constant. The masses of the linearized curvature excitations about AdS_3 backgrounds are not only shifted from their flat background values but, more surprisingly, split according to chirality. For all finite values of the topological mass, we find a single bulk degree of freedom with positive energy, and exhibit a complete set of normalizable, finite-energy wave packet solutions. This model can also be written as a sum of two higher-derivative SL(2,R) Chern--Simons theories, weighted by the central charges of the boundary conformal field theory. At two particular "critical" values of the couplings, one of these central charges vanishes, and linearized topologically massive gravity becomes equivalent to topologically massive electromagnetism; however, the physics of the bulk wave packets remains unaltered here.Comment: 36 pages, 1 figure. v2: Expanded; exhibits localized normalizable wave packets and exact chiral pp-wave solutions. v3: Added references; clarification on bulk vs. boundary chirality. v4: Published version; changes include discussion of bulk solutions' asymptotic acceptability at all m

    Quasinormal modes for massless topological black holes

    Full text link
    An exact expression for the quasinormal modes of scalar perturbations on a massless topological black hole in four and higher dimensions is presented. The massive scalar field is nonminimally coupled to the curvature, and the horizon geometry is assumed to have a negative constant curvature.Comment: CECS style, 11 pages, no figures. References adde

    Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity

    Full text link
    We explore the relation between positivity of the energy constraints in conformal field theories and causality in their dual gravity description. Our discussion involves CFTs with different central charges whose description, in the gravity side, requires the inclusion of quadratic curvature corrections. It is enough, indeed, to consider the Gauss-Bonnet term. We find that both sides of the AdS/CFT correspondence impose a restriction on the Gauss-Bonnet coupling. In the case of 6d supersymmetric CFTs, we show the full matching of these restrictions. We perform this computation in two ways. First by considering a thermal setup in a black hole background. Second by scrutinizing the scattering of gravitons with a shock wave in AdS. The different helicities provide the corresponding lower and upper bounds. We generalize these results to arbitrary higher dimensions and comment on some hints and puzzles they prompt regarding the possible existence of higher dimensional CFTs and the extent to which the AdS/CFT correspondence would be valid for them.Comment: 31 pages, 5 figures; v2: typos fixed, cosmetic amendments and references adde
    corecore